Cross Product

notation: u, v, w vectors
MON - $|u|$ is length
WED $\quad u \cdot v$ is dot product
TODAY
let $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \$ \quad \vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$
cross product : $\vec{u} \times \vec{v}$ is vector...

$$
\vec{u} \times \vec{v}=\left\langle u_{2} v_{3}-u_{3} v_{2},-\left(u_{1} v_{3}-u_{3} v_{1}\right), \quad u_{1} v_{2}-u_{2} v_{1}\right\rangle
$$

ex 1) $\vec{u}=\langle-1,2,3\rangle, \vec{v}=\langle 5,4,1\rangle$
then $\vec{u} \times \vec{v}=\langle 2 \cdot 1-3 \cdot 4,-(-1 \cdot 1-3 \cdot 5),-1 \cdot 4-2 \cdot 5\rangle$

$$
=\langle-10,16,-14\rangle
$$

$($ extra ex: $\langle 1,0,0\rangle \times\langle 0,1,0\rangle=\langle 0,0,1\rangle)$

new vector
alternatively,

$$
\begin{aligned}
\vec{u} \times \vec{v} & =\langle | \begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\left|,-\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|,\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|\right\rangle \\
& =\operatorname{det}\left(\begin{array}{lll}
i & j & k \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right)=\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| i-\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| j+\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| k
\end{aligned}
$$

* ignore row \& column of letter and cross multiply*
properties of $u \times v$:

$$
\begin{aligned}
& \text { 1) } \vec{u} \times \vec{v} \text { is a vector orthogonal to } \vec{u} \$ \vec{v} \\
& \qquad(\vec{u} \times \vec{v}) \cdot \vec{u}=0 \\
& (u \times v) \cdot \vec{v}=0
\end{aligned}
$$

$$
\text { a) length of } \vec{u} \times \vec{v} \text { measures area of parallelogram }
$$

cross product - angle formula :
$|\vec{u} \times \vec{v}|=|\vec{u}| \cdot|\vec{v}| \cdot \sin \theta \longrightarrow$ area of

criterion: \vec{u}, \vec{v} parallel $\longleftrightarrow \vec{u} \times \vec{v}=0$
ex 2) $\vec{u}=\langle-1,2,3\rangle, \quad \vec{v}=\langle 5,4,1\rangle$
find area of parallelogram spanned by $\vec{u} \& \vec{v}$
solution: it's $|\vec{u} \times \vec{v}|$, since $\vec{u} \times \vec{v}=\langle-10,16,-14\rangle$ the length is ...

$$
\begin{aligned}
& \sqrt{(-10)^{2}+(16)^{2}+(-14)^{2}} \\
& =\sqrt{100+16^{2}+14^{2}}
\end{aligned}
$$

